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Size distribution in the polymerisation model A,RBg 

P G J van Dongen and M H Ernst 
Institute for Theoretical Physics, Princetonplein 5, PO Box 80006, 3508 TA Utrecht, The 
Netherlands 

Received 22 December 1983 

Abstract. The polymer size distribution in Flory's polymerisation model AfRB, is in 
equilibrium and non-equilibrium of the general form ck = ANk(' both below and above 
the gelation transition. Here explicit expressions are derived for A(a)  and ((a) as a 
function of the extent of reaction a. The combinatorial factors N k  are calculated from the 
recursion relation 2(k- I)Nk =E,+,,, K,,N,N, with K, = s,(f)s,(g)+s,(g)s,(f) and s k ( f ) =  
( f -  I)k + I .  Using a generating function technique we express N k  in terms of Laguerre 
polynomials ( g + w )  and Jacobi polynomials ( g  finite), whose large-k behaviour is of the 
form Nk = Bk-'[ ik  with 7 =$(no  gelation occurs) i f f  or g equals 1, and with T = 3 (gelation 
occurs) i f f >  I and g >  I .  

1. Introduction 

In this paper we discuss the equilibrium distribution of polymer sizes for Flory's AfRB, 
model of polymerisation, in which monomers carry f and g equi-reactive functional 
groups of type A and B respectively (f; g = 1,2, . . .), and branched non-cyclic polymers 
are formed through A-B bonding. 

The equilibrium size distribution Ck, representing the concentration of k-mers, can 
be obtained from the theory of Flory and Stockmayer for the most probable distribution, 
and has the general form ck = ANktk  (Flory 1953, Stockmayer 1943). The Lagrange 
multipliers A and 6 are determined from the constraints X k  c k  = p (total concentration 
of polymers) and X k  kck = M (total concentration of units), and Nk represents the 
number of ways of assembling a k-mer from its constituent units. As we shall see 
below, the study of the equilibrium size distribution is also relevant for the time 
dependence of the size distribution in the kinetic theory of polymerisation. Therefore 
this paper is devoted to the study of the most probable distribution for the ArRBg model. 

In the kinetic theory ofpolymerisation, the time evolution of the k-mer concentration 
C k ( t )  may be described by Smoluchowski's equation for rapid coagulation. This 
equation represents an infinite set of coupled non-linear rate equations describing the 
irreversible bonding of polymers (Ziff 1980). It may also be extended to include both 
bonding and break-up of polymers (van Dongen and Emst 1983). The solution of this 
equation (Trubnikov 1971, Ziff 1980, Spouge 1983a, b, van Dongen and Ernst 1983) 
for an initial distribution containing monomers only has the general form ck(t)= 
A ( P . > N ~ ( ~ ( ~ ) ) ~  where A ( p )  and &) are the same functions of p as in equilibrium 
and where the time dependence of the total polymer concentration p(f)  is determined 
by the macroscopic rate equation with or without break-up processes. Also the 
combinatorial factors Nk are the same in both kinetic and equilibrium theory. 
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The factors Nk can be obtained from combinatorial methods (Flory 1953, Stock- 
mayer 1943), from the theory of branching processes (Ziman 1979) and from the 
following recursion relation (Ziff 1980, Spouge 1983a, van Dongen and Ernst 1983) 

( k - l ) N k = ;  Kl1Ni4  ( N ,  = 1). (1.1) 
~ + , = k  

In the present model, the coagulation kernel K ,  represents the number of possible 
A-B bonds formed out of free groups on an i-mer and on a j -mer ,  i.e. 

Kij(A/RBg) = s i ( f ) s j ( g )  +si(g)sj(f) (1.2) 

sk(f) = (f- 1)k + 1 (1.3) 

with 

where s k ( f )  and s k ( g )  are respectively the number of unreacted A and B groups on a 
k-mer. In fact, a simple combinatorial interpretation of (1.1) has been given by Spouge 
(1983~). The above models include after minor modifications Flory's random polycon- 
densation model RA, (A-A bonding; monomers with f equi-reactive A groups; no 
cycles) with coagulation rates: 

Kv(RA,) = ui(f)u,(f) (1.4) 

(Tk(f)=(f-2)k+2. (1.5) 

where g k ( f )  gives the number of unreacted A groups on a k-mer, i.e. 

In the RAf model, the combinatorial factors are also determined by (1.1). 
The large-k behaviour of Nk, which is in general of the form Nk -- Bk-'[ik(k + CO), 

determines the possibility of occurrence of a gelation transition, i.e. for T s 2 no gelation 
occurs and for T > 2 gelation may occur (Cohen and Benedek 1982). It appears that 
a gelation transition occurs in the A.@?, model provided 

The present models are in the general class of mean field models having the critical 
exponents of the Flory-Stockmayer theory and of classical percolation theory (7 = 6 = +, 
(T = $, (Y = -1, p = 1, y = 1, 6 = 2) (Stanley et al 1982). In these models it is assumed 
that cyclic structures are forbidden and that all bonds are equally probable. This is 
modelled through a coagulation kernel K - ij (volume interactions). In more realistic 
models bonds are formed only between reactive groups at the surface, i.e. Kij -(U)"' 
with w = ( d  - l ) / d  in d dimensions, where the critical exponents are given by T = w +$, 
6 = 2w, (+ = w - $  (Leyvraz and Tschudi 1982, Ziff et a1 1982, Hendriks et a1 1983, 
Ernst er af 1984). These results are in better agreement with those of lattice percolation 
theories. The classical result is typical for a Bethe lattice, on which the surface of a 
cluster is proportional to its volume ( w  = 1 ) .  

In the kinetic versions (Smoluchowski equation) of the Flory-Stockmayer theory 
of polymerisation the clusters have infinite mobility. In the lattice theories the clusters 
are completely static. Recently, several kinetic models with finite mobility have been 
simulated (Herrmann et a1 1983, Bansil et a1 1984) in attempts to construct better 
models for the kinetics of polymerisation and gelation. 

Apart from the unrealistic features of equi-reactivity of all functional groups and 
infinite mobility of clusters, the classical polymerisation models have the great advan- 
tage of complete solubility. 

The purpose of this paper is to present a simple method leading to explicit 
expressions for the quantities A(p) ,  [ ( p )  and Nk in the size distribution ck = ANktk  

g > 1.  
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in the AfRBg model. For the present model Spouge (1983a, c) has already shown that 
A and 6 are implicitly related to macroscopic parameters p and M through the 
generating function of the Nk’s, and he has determined this generating function-at 
least in principle. However, his method is too complicated to lead to any explicit 
results for Nk at general functionalities f and g, whereas our method leads to closed 
expressions for Nk in terms of Laguerre polynomials (g + 00) and Jacobi polynomials 
(g finite). 

Along completely different lines, using the theory of branching processes, Spouge 
(1983~) has recently calculated ck  (including N k )  in explicit form for general f and g ,  
where Nk is represented as a sum of a finite number of terms. However it seems rather 
difficult to analyse the large-k behaviour of such sums, which is essential for describing 
the behaviour of the size distribution in the vicinity of the gelation transition. 

The plan of this paper is as follows. In § 2 we calculate the combinatorial factors 
Nk and the complete size distribution c k  for the model A,-RB, with many reactive B 
groups per monomeric unit (g + a), and in § 3 for the general A,-RB, model ( g  finite). 
The asymptotic size distribution as k + 00, and the scaling form of ck in the vicinity of 
the gel point, are discussed in 0 4 using the saddle-point method. In an appendix we 
show that our results for Nk in terms of Jacobi polynomials agree with Spouge’s results. 

2. Model AfRB, 

Certain simplifications occur in case the functionality of one type of reactive group 
becomes large. We therefore consider first the limit g + 03, where the coagulation 
kernel (1.2) (after rescaling by a factor g) takes the form 

(2.1) 

In order to solve the recursion relation (1.1) and determine the equilibrium size 

K ,  = is, +js ,  = 2(f- 1)ij + i + j  

with S k  = S k ( f )  = (f- 1)k f 1. 

distribution c k ,  it appears convenient to use two generating functions: 

related by 

F = ( f -  l)G’+G. 

The prime denotes an x derivative. 
The size distribution takes the form ck = A N k t k ,  and the constraints 

p = 1 ck = A G ( x )  
k 

M = ~ = ~ ~ C ~ = A G ’ ( ~ )  
k 

determine A and ,$=e” as a function of p. It is convenient to choose the unit of 
volume such that the total concentration of units equals 1 ( M  = 1). Of course, A and 
5 may be expressed in other parameters, equivalent to p, such as the extent of reaction 
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a (i.e. the fraction of reacted A groups), which for the present model is given by 

In this case it is convenient to replace the constraint (2.4) by the following relation 
for the concentration of unreacted A groups 

( 2 . 7 ~ )  

where the right-hand side can be expressed in the generating function F(x) in (2.2) 
on account of (2.4) and (2.5): 

(2.76) 

The constraints (2.5) and (2.7a, b) determine A(a)  and ((a) as functions of a. 
We start by solving the recursion relation (1.1) in terms of generating functions 

and obtain A(a)  and ( ( a )  from (2.5) and (2.7a, b) ;  next we calculate Nk from the 
generating function F by inversion of the relation (2.2). 

Apart from (2.3) two other relations between F and G may be deduced from the 
recursion relation. Multiplication of both sides of (1.1) with eh and summation over 
k yields 

GI- G = G’F. (2.8) 

Alternatively, both sides of (1.1) may be multiplied by sk eh and summed over k with 
the result: 

F’- F = ( f -  l )F’G’+FF’.  (2.9) 

G ‘ =  F / ( f -  F )  (2.10) 

F’=F(f-F)(F2-2fF+f)-’ .  (2.1 1) 

Elimination of G from (2.3) and (2.8) gives 

and subsequent substitution into (2.9) yields a differential equation for F(x): 

On account of the limiting behaviour F -f ex (x + -CO) the required solution of (2.1 1) 
for 5 = ex in terms of F is 

( = ex = (F/f)( 1 - F/f)f-l e-F. (2.12) 

The radius of convergence (, of P ( ( )  = F ( x )  in (2.2) is determined from (2.12) by the 
condition d[/dF = 0 (maximum). Calling the solution F,, it follows that 

F,= P ( ( , ) = f - ( f 2 - f ) ” ’  (2.13) 

The solution (2.12), valid for O S  FS F,, may be analytically continued to hold for all 
complex values of F. 

To obtain the size distribution ck((Y) = A(a)Nk((a)k we first express A(a)  in terms 
of F(x(a)) by means of (2.5) and (2.10): 

( 2 . 1 4 ~ )  

Hence we have from (2.7a, b )  for the extent of reaction, a = F(x(a) ) / f ,  which yields 
A(a)  = l / G W a ) )  = [f- F(x(a))l!F(x(a)). 
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upon substitution into (2.14a) 

A ( a )  = (1 - C Y ) /  CY. (2.14b) 

Analogously the fugacity ( ( a )  may be determined from (2.12). The result is 

t ( a )  = a ({  -ay-’  e-fa. (2.15) 

Combination of (2.14b) and (2.15) yields the following expression for the size distribu- 
tion in terms of the extent of reaction 

(2.16) C k ( a )  = Nka k - ’ (  1 - a)’‘ e-fak 

where Nk will be calculated below. 
Equation (2.16) has a simple probabilistic interpretation, since a gives the probabil- 

ity that an A group, selected at random, has reacted. Hence the k-mer concentration 
c k ( ( Y )  equals the number of different configurations, Nk, multiplied with the probability 
for a specific k-mer configuration with k - 1 bonds (yielding a factor a ‘ - I ) ,  with s k  

unreacted A groups (yielding ( 1  - a ) ’ k ) ,  and with k infinite sets of B groups (epfak). 
Actually it will be seen in the next section that the factor e-’ak is obtained in the limit 
of high functionality (g + CO) from the probability for s k ( g )  = (g - l)k + 1 unreacted B’s. 

Once the explicit form (2.16) of the size distribution ck(a) = A N k t k  is known, the 
higher moments, Z knck ( n  3 2), can be simply calculated by ( n  - 1 ) times differentiating 
the relation M = 1 = AZkNktk  with respect to a. This yields e.g. for the second moment: 

(2 .17~)  

= (fa2-2fa + l)-f (2.17b) 

where A’ and (‘ denote derivatives with respect to a of A and 5. They are explicitly 
given in (2.14) and (2.15). 

The derivation of (2.16) for the size distribution is valid only for a G a,, where the 
critical extent of reaction is defined by 

a,= F,/f = 1 - ( 1 -  l/fl’’2 (2.18) 

and (2.13) has been used. At a = a,  (or = 6,) the generating functions G and F are 
non-analytic, and one finds that the weight-average cluster size k2ck = 
( fa2  - 2fa + I)-’ diverges as (a,- a)-’ for a f a,  (or ~ ( a )  f x,). At a ,  an infinite cluster 
(gel) appears in the system, and a gelation transition takes place provided f > 1. 

In the presence of a gel we assume, following Flory’s method, that the bonding 
process is also random. Thus the concentration c k ( ( Y )  of finite size clusters (sol) is 
given by (2.15H2.16) for all a(OG a G l), where a retains the interpretation of the 
probability that an A group be bonded. For a > a, a finite fraction of all units is 
contained in the gel, and the mass fraction M ( a )  in the sol is given by 

(2.19a) 

= A( a ) / A ( a  *) = a *( 1 - .)/[a( 1 - a*)]. (2.19b) 

For a given value of a, i.e. for a given ( ( a ) ,  equation (2.15) has a solution, called a*, 
with a* < a,  (see figure 1). Since a* < a,< a, it follows from (2.19) that M ( a ) <  1. 
The gel fraction G ( a )  = 1 - M ( a )  is a monotonically increasing function of a, which 
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d 

Figure 1. The fugacity [ ( a )  = a(1 - a y - ‘  exp( -fa) in the A,RB, model (here we have 
chosenf= 3) as a function of the extent of reaction a. The broken line shows the graphical 
construction of the root a* for a in the interval a,< a < 1 ,  as described in the text. 

approaches unity as a + 1. Similarly one obtains for the number of clusters, using (2.19), 

(2.20) 

From its definition we deduce that the extent of reaction of the sol particles is a,  = a*. 
We also note that Flory’s post-gel cluster size distribution (2.16) can be written as 

branching processes (Ziman 1979). This formula has a simple probabilistic interpreta- 
tion. M ( a )  equals the probability that a unit is in the sol, i.e. is contained in a finite 
size cluster, and f&(a,) is the cluster size distribution for polymer conditioned to be 
in the sol, in which the extent of reaction has the value a,  = a*. The extent of reaction 
of the gel, ag,  can be deduced from the relation 

c k ( a )  = ( A ( a ) / A ( a * ) ) C k ( a * ) =  M((Y)Ck((r,), as is Well known from the theory Of 

a = M ( a ) a ,  + G(a)a ,  

a g = a  +a*-aa* .  (2.22) 

(2.21) 

and it is found to be 

At the gelpoint ag(ac) = l/f; which equals the fraction of reacted groups in a large 
cluster without cycles. However, for a > a,  one has ag> I / f ;  indicating that in the gel 
on the average more than one A group per monomeric unit is bonded. This indicates 
that the gel cannot be acyclic, as already argued by Stockmayer (1943). The total 
number of clusters is, therefore, different from (1 -fa). 

Stockmayer’s (1943) model of a gel is somewhat different. Here the assumption (i) 
of an acyclic gel is strictly maintained. In addition it is assumed (ii) that the fugacity 
( ( a )  = 5, is fixed at the critical value. The fraction of reacted A groups is in general 
given by (2.21) with G(a)  + M ( a ) =  1. Here ag= I/f on account of assumption (i): 
the extent of reaction of the sol is a constant, i.e. a ,  = a ,  on account of assumption 
(ii) and (2.15). Hence the sol and gel fractions are linear functions of a and the relative 
size distribution has the same value as for a,, i.e. 

ck ( CY ) = M ( a  ck ( a c ) .  (2.23) 
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Consequently, 
p ( a )  = M(a)( l  -fa,>. (2.24) 

Since ~ ( a )  = 1 -fa on account of assumption (i) the mass fraction of the sol in 
Stockmayer's model of the gel is 

(2.25) 

The behaviour of these coagulating systems near the critical extent of reaction cyc  will 
be studied in P 4. 

We continue with the calculation of the combinatorial factors Nk and use Cauchy's 
formula to obtain the coefficient of tk in the expansion (2.2) of F'(x), i.e. 

M ( a )  = P(cy)/F(Qc) = (1  -f.)/(1 - f d  

(2.26) 

The path of integration C is a closed contour around the origin, such that other zeros 
of ( ( F )  are outside C. Inserting (2.12) and calling F =fz yields then the following 
explicit expression for the combinatorial factors 

ks,Nk =f(27ri)-' ~ - ~ ( l -  z ) - ( ~ - ' ) ~  e f k z  dz. f (2.27) 

The integral can be evaluated straightforwardly by expanding exp(fkz) and (1 - 2)" in 
powers of z and selecting the coefficient of zk-l with the result 

(2.28) 

where (:) is a binomial coefficient. A different representation is obtained by rewriting 
the summand in terms of Pochhammer symbols ( a ) ,  = T(a + m)/T(a) and using the 
series representation of the confluent hypergeometric function given by equation (13.1.2) 
of Abramowitz and Stegun (1965, henceforward referred to as AS): 

(2.29) 

For a = - n(n = 0, 1, 2, . . .) this expression reduces to a polynomial of the nth degree. 
Thus, we obtain 

(2.30) 

where Ly'(x) is a Laguerre polynomial, and AS (13.6.9) has been used. 
A third representation follows directly from the integral (2.27), i.e. 

kSkNk=fl(k- l)!]-'U(l - k, 2-fk,fk) (2.3 1) 

since (2.27) corresponds to an integral representation (Erdelyi et al (1953) equation 
6.12.2(9)) for the confluent hypergeometric function U(a,  6, x). The path of integration 
in the general expression (which is a loop around a cut in the complex z plane, 
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encircling the origin) reduces here to a closed contour around the origin, since the 
integrand has no branch points. Equation (2.3 1) immediately implies the expression 
(2.30) in terms of L v ' ( x )  on account of AS (equation 13.6.27). The above expressions 
for N k  in the ArRB, model are new results. 

Next, we consider some special cases, covered by our general result (2.28)-(2.31). 
For f =  1 only the term with m = 0 contributes to (2.28), so that 

Nk = kk- ' /  k! (ARB,). (2.32) 

This is the well known result of Golovin and Scott (see Drake 1972) for the model 
ARB, with K, = i +j.  

In the limit f-. CO the binomial coefficient in (2.28) reduces to (-fk)"/ m !, and the 
sum on the right-hand side of (2.28) can be carried out, yielding to dominant order 
in f 

Nk = (2Ak-' kk-*/ k!. (2.33) 

If one rescales for large f the kernel K, in (2.1) and the corresponding combinatorial 
factors N k ,  defined by (1. l),  by factors f (resp. 2f) and f k - '  (resp. (2f)k-') respectively, 
one finds the kernels K, = 2ij (resp. K, = ij) for the model A,RB, (resp. RA,) and 
the corresponding combinatorial factors as obtained by McLeod (1962). 

The special case f = 2 ,  where K ,  = 2 i j + i + j  corresponds to the needle model of 
Hendriks and Ernst (1984). In this A2RB, model monomers may be thought of as 
needles, where the two needle points carry a reactive A group and where the cylindrical 
surface of a needle is uniformly covered with reactive B groups, and polymerisation 
occurs through A-B bonding. In this case the combinatorial factors are still relatively 
simple. They can be obtained most easily from (2.31) using AS, equations (13.1.29) 
and (13.6.21). The result is 

(2.34) Nk = (2ke)k[(k + 1 ) ! ] - ' ( 2 / . r r k ) ' i 2 K k - l i 2 ( k )  

where K n + l 1 2 ( ~ )  is a spherical Bessel function. 

3. Model A,-RBg 

Next we consider the size distribution in the general model A,-RB,. In view of the 
subsequent calculations, it is convenient to write the kernel (1.2) as 

(3.1) K, = sl[(g - 1)j + 11 + sJ[(g - 1)i + I ]  

where s k  = s k ( f )  = (f- l)k + 1. The derivation of a differential equation for the generat- 
ing function F ( x ) ,  defined in (2.2), the construction of the size distribution and the 
calculation of the combinatorial factors Nk, proceed along the same lines as in the 
previous section. 

First, one has again (2.3), relating F and G. From the recursion relation (1.1) one 
finds in the present case: 

G' - G = F[(g - l )G'  + GI ( 3 . 2 ~ )  

F ' - F = F [ ( g -  l ) F ' + F ] + ( f -  l)F'[(g- l )G '+G] .  (3.2b) 

By taking a suitable linear combination of equations (2.3) and ( 3 . 2 ~ )  it follows that 
(g - l )G'  + G = gF/[f-(g - f ) F ] .  This yields in combination with (3.26) the following 
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differential equation for F ( x )  

F'[f-2f(g- l ) F + ( g -  l)(g-f)F2]= F( l  +F)[f-(g-f)F]. 

5 = ex = ( F / ~ ) ( I  + F) ' -~ -~ [ I  +(f- g1Flfl-I 

(3.3) 

The variables can be separated and splitting in partial fractions yields the solution 

(3.4) 

satisfying the boundary condition F ( x )  -f ex(x + -CO). It may readily be shown from 
(3.4) that the radius of convergence (, of P(&)  = F ( x )  is finite and determined by 

Fc = P ( & )  =f(g -f)-I{ 1 - Mf- 1 )lfk - 1 )11/2). (3.5) 

The generating function F ( ( )  is therefore defined by the branch 0 s  F S  F, of t ( F )  
given in (3.4). 

The next step in obtaining the size distribution for the A,RB, model is the calculation 
of A ( a )  and &a). Since A =  l /G'(x) on account of (2.5), we eliminate G from (2.3) 
and ( 3 . 2 ~ )  to obtain an expression for G' in terms of E The result is 

(3.6) 

As the extent of reaction of the A groups satisfies f( 1 - a )  = AF by virtue of (2.7a, b), 
we eliminate F in favour of a to obtain 

A(  a 1 = if + ( f - g 1 F ( x (  a 1111 { F ( x (  a 1 )[ 1 + F ( x (  a ))I). 

4 0 )  = ( 1  - -P)(g/a). (3.7) 

Here we have introduced the extent of reaction p, representing the fraction of reacted 
B groups. It is simply related to a by gp  =fa, since in the AfRBg model the concentra- 
tions of reacted B groups (gp) and reacted A groups (fa) are equal. Analogously ( ( a )  
may be obtained from (3.4): 

(3.8) ( ( a )  = (a/g)( 1 - a y (  1 -@)"I 

ck(a)= Nk(a/g)k-'(l - ( y ) ' k ( ( f ) (  1 - p ) ' k ( g ) ,  

and we have for the size distribution 

(3.9) 

As in the previous section, equation (3.9) has a probabilistic interpretation, where now 
a / g (  = p / f )  gives the probability that a specific A (resp. B )  group is bonded to one 
particular B (resp. A )  group out of g (resp.f) groups on the next unit, and (1 - p ) ' ~ ( ~ )  
gives the probability for sk(g)  = (g  - l ) k  + 1 unreacted B's. It is readily seen that the 
factor (1  - p)sk(g)  reduces to e-fok in the limit of high functionality (g + CO). A phase 
transition takes place at a = a, (or equivalently: /3 = &), where the critical extent of 
reaction a,  is the solution of the equation d((a) /da = 0 with ((a) given by (3.8): 

(3.10) 

The moments, Z k"ck, can be calculated as in § 2, and we obtain from (2.17a), (3.7) 

f . c=gA=fg(f+g-  l)-W -U- 1Xg- 1)/fgl1/*1. 

and (3.8) for the second moment: 
X 

C k 2 C k = ( 1  - aP)/[1 -fa - g p  + ( f + g -  1)aP]. 
k =  I 

(3.1 1) 

It diverges like (a, - a)-' as a t a=. 
Using Flory's model of a gel, we assume that ck is given by (3.9) in the post-gel 

stage ( a  > a,) as well, where a and p retain the interpretation of bonding probabilities. 
Since the mass fraction of the sol M ( a ) <  1 according to (2.19a), a macroscopic gel 
phase may occur in the system provided max{a,, P E }  < 1, and it follows from (3.10) 
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that gelation takes place for J ;  g > 1. The extent of reaction of the sol is given by 
a,  = a*, where a* is defined in a similar way as before (see figure 1). The extent of 
reaction of the gel, ag, can be calculated from (2.21) and one finds the result 

ag = [ a  + a* - a*(a + P ) ] / (  1 - a*p)  (3.12) 

with fa = gp. For a > a,  this quantity is larger than l /J  indicating that the gel has a 
cyclic structure. In Stockmayer's model ofa gel equations (2.23)-(2.25) should be used 
again. 

To calculate Nk the relation (3.4) for t ( F )  may be continued analytically to hold 
for all F in the complex plane, and we have from (2.26) 

(3.13) 

where the contour is a closed path around the origin that excludes all other singularities 
of the integrand. 

As the integrand in (3.13) is of the form z-'A(z),  the right-hand side of (3.13) is 
equal to the coefficient of z k - l  in the Taylor expansion of A ( z ) ,  yielding the following 
explicit expression for the combinatorial factors Nk of the model ArRBg: 

= f( - gy-1 P r y ) (  1 - 2f/ g) (3.14b) 

where a = 1 - fk  and p = (g +f- 2)k + 1. This is a new result. We have used the Jacobi 
polynomials in the form (Erdelyi et a f  (1953) equation 10.8(12)): 

which is a special case of the hypergeometric function. 

22.1 5 . 5 :  
The result (2.30) for large g may be obtained from (3.14b) using AS, equation 

(3.16) 

In the explicit form (3.14) the symmetry of Nk upon interchanging f and g is not 
obvious. As is shown in an appendix, a more symmetric form can be obtained from 
(3.13) by changing integration variables and performing a partial integration. The 
resulting expression reduces to the symmetric form of Spouge (1 983c): 

(g-  1)k + m  (f- 1)k + n  
ksk(ASk(gINk = f "gn(fgk -fn - gm)( m )( ) (3.17) 

m + n =  k - 1  

as derived in equation (A6) of the appendix. 
The general formula for Nk in the model ArRBg covers several well known cases. 

For f = 1 one has the model ARB, corresponding to the coagulation kernel K ,  = 
(g -  l ) ( i + j )  +2. In this case only the term with n = O  contributes to (3.14a), yielding 

kNk=( k - 1  gk ) (ARB,) .  (3.18) 
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In the special case f = g ,  where K ,  =2s,(f)s,(f), one obtains again a simple 
expression for Nk, since only the term with n = O  contributes to (3 .14~) .  Hence, the 
combinatorial factors for the model AfRBf become: 

(3.19) 

The coagulation kernel of this model is related to that of the RA, model on account 
of ( 1.2)-( 1 S), namely 

Kij(AfRBf) = 4K,(RA2f). (3.20) 

Consequently, the recursion relation (1  . I )  implies 

Nk(RA2f) = 2k-'Nk(AfRBf) (3.21) 

which has an obvious combinatorial interpretation. Since the extent of reaction for 
CY < a ,  is given by CY = ( 1  -p) / f  in both the RA, and the AfRBf model, the size 
distribution for the RA, model readily follows from (3.9) in combination with (3.21). 
Hence we have for the size distribution in the RAf model (cf Flory, Stockmayer) 

(3.22) 

where uk( f )  is given in (1  5). The interpretation of (3.22) is, that any specific configur- 
ation has probability (a/f)"-'( 1 - for having k - 1 bonds between a specific A 
on one unit and one out o f f  possible A's on another, and unreacted groups. 
Finally the combinatorial factor gives the number of different configurations. In the 
RAf model with f > 2 the phase transition takes place at CY, = 1 / (  f - 1). For CY > a ,  
one may use either Flory's or Stockmayer's gel model, where the relevant formulae 
can be simply deduced from 0 2. 

ck((Y) = (./ak-'( 1 - (Y)uk(nfk[( f - l)k]!/[k!uk(f)!] 

4. Asymptotic results 

In the previous section we have calculated explicit expressions for the size distribution 
in the form Ck(a) = A(cr)Nkt(a)'. Here we obtain asymptotic expressions ( k  + 00) for 
the combinatorial factors Nk, and hence for the size distribution of the AfRBm and 
AfRBg models. They will be derived from the integral representations (2.27) and (AI) 
using the saddle-point method. From the asymptotic behaviour of the combinatorial 
factors we further obtain the scaling properties of the size distribution near the critical 
point CY = CY,. 

No standard asymptotic expressions seem to be available for (confluent) hyper- 
geometric functions with large parameters and large argument. The only exception is 
a result applicable to the A,RB, model. In the latter case, AS (equation 9.7.8) may 
be used to obtain the following large-k approximation 

(4.1) N k  = k-s/2[27r(2 +fi>]-'/*[2(1 +JZ) e2-&lk[l + ~ ( k - l ) l  

which has also been given by Hendriks and Ernst (1984). 

tion (2.27). We define 
Consider the AfRB, model first. In this case N k  is given by the integral representa- 

w =  F / f  

V ( w )  = fw - log w -(f- 1) log( 1 - w) (4.2) 
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and rewrite (2.27) in the following form 

kSkNk/ f = (2Ti)-' (4.3) 

Here the path of integration C may be any closed contour around the origin, provided 
w = 1 is outside C. The (complex) function V(w) has a saddle point where dV/dw = 0, 
i.e. at 

w c =  1 - (1-  1 / j y 2  (4.4) 

located in between the two poles w = 0 and w = 1. We now choose the circle I wl = w, 
in the complex plane as our contour, so that we have from (4.3) 

where by definition x = log w and P(x) = V( w). 
For k + CO the dominant contribution to the integral (4.5) comes from x values near 

the saddle point x, = log w,, since for large values of k the integrand exp[x + kV(x)] 
is sharply peaked about its maximum at x,. The function V(x) may be expanded in 
a Taylor series near x = x, as follows 

V(  x) = V( x,) + (x - x,) V'(xc) + f(x - x,)2 V(  x,) + . . . (4.6) 

P(x)= 1 +& x-xc)2+ ... ( f  = 1) (4.7a) 

and one finds the result 

= V(x,) +(x - x,I2f exp(x,) + . . . (f > 1). (4.76) 

Note that the special case ( 4 . 7 ~ )  cannot be recovered from (4.76) as f J. 1, and should 
be treated separately. The reason is that 

The dominant large-k behaviour of (4.5) then becomes 

kSkNk/ f (27r)-' exp(x, + kV(x,)) dy exp[ -fky2 V(x,)] 

= (2~kV"(x,))-"~ exp(x, + kV(xc)) (k + CO) 

yielding 
Nk = Bk-'[ik (k+m). 

In the special case f =  1 we have 7 = and 

B = ( 2 ~ ) - " ~ ,  5, = e-' 

(4.9) 

(4.10) 

(4.1 1) 

whereas for f > 1 we have T = 2 and 

B = [ fwc/45T( f - 1)2]1'2, 5, = wc(1 - W C P  exp( -fwc> (4.12) 

where w, is given by (4.4). In the special case f = 2 it may be readily verified that the 
result (4.12) reduces to the expression (4.1). 

Next we consider the large-k behaviour of the Nk in the ArRBg model. We start 
from the integral representation (Al) ,  which is equivalent to (3.13) but has the advantage 
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of obvious symmetry with respect to f and g. As a result our asymptotic expressions 
will also show a symmetric dependence on the functionalities. First we assume that 
f, g > 1, and we define the auxiliary functions 

(4.13a) 

(4.13 b )  

h ( w )  = (1 -gfw)[w(l -gw)(l -fw)]-’ 

V(w) = -log w -(f- 1)  log(1 -gw)-(g - 1) log(1 -fw) 

in order to write (Al )  in the form 

Sk(f)Sk(g)Nk =(2Ti)-’ fC dw h ( w )  ekV(w) (4.14) 

where C is a closed contour around the origin such that w = 1/ f and w = l / g  are 
outside C. The function V has a saddle point at 

w, = (g +f-  ])-‘(I - r ) ,  r = [(f- l)(g - l)/fgl”’ (4.15) 

located in between the pole w = O  and the zero w = l/fg of the integrand 
h ( w )  exp(kV(w)) of (4.14). 

In order to determine the dominant large-k behaviour of the integral (4.14) we 
choose for our contour a circle of radius I wI = w, and we define x, = log w,, x = log w, 
x = x, +iy, and P(x) = V(w). As before we may expand V(x) in a Taylor series about 
x,, where 

P(x,)  = (2f- 1)/2(f- 1)  (f = g) 
= 2fg(f-g)-’[(f+g -2) - ( g  +f)rI  (f + g). (4.16) 

Calculation of P(x,)  in the case f# g is lengthy but straightforward. Evaluation of 
w h ( w )  at the saddle point shows that 

w,h(w,) = f P ( x c ) .  (4.17) 

Inserting (4.17) and the Taylor expansion (4.6) combined with (4.16) into (4.14), and 
replacing the contour C for large k by the line x = x, +iy, with - < y <CO, yields a 
dominant asymptotic behaviour of Nk in the form (4.10) with 7 = ;. The case f = g > 1 
yields the following explicit results for B and 6, 

B = $(f- l)-”’[(2f- 1)/7r]”’ 

6, = [2(f- l)]’(f-’)/[f(2f- 1>”-’3. 

The case f# g, f, g > 1 yields 

B = (P(xc)/27r)”*/[2(f- l)(g - l)] 

5, = w,( 1 - g w y - y  1 -fw,)g-’ 

(4.18) 

(4.19) 

where w, and p(x , )  are given in (4.15) and (4.16) respectively. 
The special case where j ’ =  1 or g = 1 cannot be recovered from (4.18) or (4.19) in 

the limit f.l  1 or g .1 1. By symmetry of f  and g, we assume that f = 1. Here we have 
instead of (4.13) 

h( w) = [ w( 1 - w)]-’, eV‘”’ = [w( 1 - w)g-’ ] - ’  (4.20) 

and it follows that w, = l/g, and v”(x,) = g/(g - 1)  = w,h(w,). Substitution of these 
results into the integral representation (4.14) with sk(l)= 1 yields an asymptotic result 
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for Nk of the form (4.10) with 7 = and 

B = (g - l)-3 '2(g/2~) ' '2,  (, = w,( 1 - w,)g-' (4.21) 

provided g > 1. For f= g = 1 one does not find a saddle point, and clearly the 
saddle-point method is not applicable to this case. However, the large- k behaviour of 
Nk in this model is well understood, since we have the explicit form Nk = 1. 

In the limit g+co our results (4.19) and (4.21) reduce to the previous result 
(4.11)-(4.12), provided we rescale w, and Nk by factors g and gk- '  respectively. 
Similarly asymptotic expressions for the combinatorial factors of the A,RB, and RA, 
models are obtained (which read B = [2(277)'/']-', (,= (2e)-' and B = 1 / ( 2 7 ~ ) " ~ ,  (,= 
e-' respectively) from (4.12) with f+ m or alternatively from (4.18) with f =  g + W. 

In order to obtain asymptotic expressions for the size distribution c k ( ( Y ) ,  we first 
note that the parameter (, = exp[ - V(w,)], which determines the exponential k-depen- 
dence of Nk as k + 03, is clearly identical to the radius of convergence of the generating 
function F ( ( ) .  This quantity has also been denoted by 8, and is given by (2.12)-(2.13) 
far the model A,RB,, and by (3.4H3.5) for the model AIR& The equivalence of 
(3.4)-(3.5) and (4.19) is not immediately obvious but may be shown straightforwardly. 
Thus we have on account of (4.10) for the large-k behaviour of the size distribution 

(4.22) 

where the values of B, 8, and T in the various models have been calculated above. 
To study the properties of the size distribution near the phase transition, we assume 

that f; g > 1 in order to ensure that gelation takes place, i.e. that max{ac, pc} < 1, and 
we expand log(((a)/(,) in powers of E = ( a  - a,)/a,. In the case of the A,RB, model 
we have from comparison of (2.15) and (4.2) 

(4.23) 

where we have used the fact that V'(ac)= V'(w,)=O. It is readily demonstrated that 
a f V ( a c ) =  p(x,)  (the primes denote differentiation with respect to a and x respec- 
tively), and one finds that 

( (a) / ( ,=  exp[ - ~ V ( X , ) E ~ ]  (4.24) 

where p(x,) = 2fa, on account of (4.76). 
In the case of the AfRBg model we have ( ( a ) =  exp[- V(a/g)] where V(w) is 

defined in (4.13b). Expanding V ( a / g )  in powers of E shows that equation (4.24) holds 
for the ArRBg model as well, with v"(x,) now given by (4.16). Combining (4.22) and 
(4.24) finally shows that for a + a,  the size distribution takes the following scaling form 

C k ( ( Y ) ^ -  k-'A(a)B exp[ - f k p ( x , ) l ~ / " ~ ]  (k + *I (4.25) 

where the critical exponent T = $ and (+ = $ are universal within the class of ArRBg type 
models, provided we take f; g > 1. The result (4.25) applies to Flory's model of gelation 
both below ( a  t a,) and above ( a  J. a,) the critical point. In Stockmayer's model of a 
gel the fugacity ( ( a )  remains constant for a 2 a,, and the corresponding form 

C ~ ( C Y )  k-'M(a)A(a,)B (k + 00) 

holds for all a 2 a,. 

(4.26) 
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Finally, we compare the behaviour of M ( a )  = 1 - G ( a )  for a 3. a,  in Flory’s and 
Stockmayer’s gel model. By expanding equations (2.19) and (2.25) in powers of 
E = ( a  - a=)/&= one obtains for all three polymerisation models RAf, AfRB, and AfRB,: 

M ( a ) =  1 - 2 ~ / r  (Flory, e 3.0) 

(Stockmayer, E 3. 0) = 1 - E / r  

where the coefficient r is given by 

(4.27) 

(4.28) 

We remark in concluding this paper, that our results hold for real values of f  and 
g as well, provided f3 1 and g 3 1, and for complex conjugate f and g =f” with 
Re(f) 3 1 and Re(g) 3 1. Thus we have in fact obtained the equilibrium size distribution 
and its asymptotic behaviour ( k + m )  for the general bilinear kernel K , =  
A + B( i  + j )  + Cij with real A,  B and C 3 0, since (1.2)-(1.3) may always be written in 
this form by transforming f and g according to 

f; g = ( A  + B f D)/  A (4.29) 

with D2 = B2 - A C  being positive or negative, and subsequent rescaling of K ,  (resp. N k )  
by a factor A / 2  (resp. ( A / 2 ) k - ’ ) .  The special case A = 0 corresponds to the limit g + 03. 
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Appendix 

In order to put (3.6) into a more symmetric form, we change integration variables, i.e. 
F = f w / (  1 - f w ) ,  and subsequently perform a partial integration using f( 1 - ~ W ) - ~ - I  = 
a-’(d/dw)(l - fw)-“.  The resulting expression for Nk is 

sk(f)sk(g)Nk = (27fi)-’ fC dw W - k - l (  1 -fgW)( 1 - f W ) - s k ( g ) (  1 - gW)-Sk(f )  (AI) 

where sk(a is defined in (1.3). The representation (Al)  is obviously symmetric upon 
interchanging f and g. 

The integral can be evaluated as in (3.6) with the result 

m + n = k  m 
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which may, if desired, be expressed in Jacobi polynomials by virtue of (3.8). Here we 
want to combine both sums in (A2) into a single sum. In order to do so, we multiply 
(A2) by k and write the second sum on the RHS as kZS, ,  = Z ( m  + n ) S m n .  First we 
consider 

k k -  I c m S m , k - m =  c ( m + l ) S m + l , k - m - l  
m=O m =O 

= -f [ ( g  - l ) k  + m + l ] S m n .  
m + n =  k - l  

As the term with m = 0 does not contribute to LHS (A3), we replace rn by m + 1 ,  yielding 
the first equality. In the second equality we have used the relation 

( m + l ) (  m + l  a ) = ( a - m l (  m "). 
In a similar way we find 

k C nSk-,,, , ,  = - g [(f- l ) k  + n + 1 1 S m n .  
n =o m + n = k - l  

Combination of (A2), (A3) and (A5) then yields Spouge's result ( 1 . 7 ) ,  namely 

m + n  s k -  I m n 

where we have used the relation 
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